# Site percolation on planar graphs and circle packings 

Ron Peled, Tel Aviv University, on sabbatical at the IAS and Princeton University

## Discrete Mathematics Seminar, Rutgers University

## Site percolation

- Site percolation with probability $0<p<1$ on a (simple, connected) graph $G$ is the random subgraph $G_{p}$ formed by independently retaining each vertex of $G$ with probability $p$, and otherwise deleting it.
- Research focuses on the connected components (clusters) of $G_{p}$. The probability that $G_{p}$ contains an infinite cluster transitions from zero to one at a critical value $p_{c} \in[0,1]$ (the probability is 0 for $p<p_{c}$ and is 1 for $p>p_{c}$ ).
- Percolation is classically studied on structured graphs including lattices such as $\mathbb{Z}^{d}$, the complete graph (Erdős-Rényi $G(n, p)$ ) or regular trees, but the case of general graphs is also of great interest.
- In this talk we discuss percolation on infinite planar graphs and focus on the value of $p_{c}$.


## Site percolation on $\mathbb{Z}^{2}$

- Simulations of site percolation on a $75 \times 75$ grid in the square lattice $\mathbb{Z}^{2}$ (from Wolfram demonstrations project).
- Clusters of bottom and top highlighted in red.
- Site percolation threshold $p_{c} \approx 0.59274(10)$ (Derrida-Stauffer 1985).


$$
\mathrm{p}=0.4
$$



$$
p=0.59
$$



$$
\mathrm{p}=0.7
$$

## Infinite planar graphs



Binary tree, $p_{c}=1 / 2$


General tree


$\mathbb{Z}^{2}, p_{c} \approx 0.59$


Voronoi diagram of points in $\mathbb{R}^{2}$

The random loops in the loop O(n) model Simulation by Y. Spinka

## Benjamini conjectures

- How high or low can the value of $p_{c}$ be for planar graphs?
- General lower bound: $p_{c}(G) \geq \frac{1}{\Delta(G)-1}$ where $\Delta(G)$ is the maximal degree of $G$. Follows from union bound: At most $\Delta(G)(\Delta(G)-1)^{L-2}$ paths of length $L$ from each vertex. Sharp for regular trees, so $p_{c}$ can be arbitrarily low for planar graphs. There also exist planar graphs with $p_{c}<1$ but arbitrarily close to 1 (e.g., sub-divide edges of $\mathbb{Z}^{2}$ ).
- Can we say more for special classes of planar graphs?

Benjamini (2018) relates the question to the behavior of simple random walk on $G$.

- $G$ is recurrent if simple random walk on it returns to its starting point infinitely often. Otherwise, $G$ is transient.
$G$ is one-ended if it has a unique infinite connected component after removing any finite set of vertices (e.g., $\mathbb{Z}^{2}$ is one-ended but $\mathbb{Z}$ is not).
A planar graph $G$ is a triangulation if it has a planar drawing with all faces triangles.
- For site percolation with $p=1 / 2$ on bounded-degree one-ended triangulations $G$ : Conjecture (Benjamini): If $G$ is transient then $G_{1 / 2}$ has an infinite cluster. Question (Benjamini): Does recurrence of $G$ imply that $G_{1 / 2}$ has no infinite cluster? In particular, $p_{c}$ cannot be arbitrarily high/low for such planar graphs.


## Results

- Theorem (P. 2020): There exists $p_{0}>0$ such that the following holds for all one-ended triangulations $G$ :
- If $G$ is recurrent then $G_{p_{0}}$ has no infinite cluster.
- If $G$ is bounded degree and transient then $G_{1-p_{0}}$ has an infinite cluster.
- The emphasis is that $p_{0}$ is universal - $p_{c}$ is uniformly bounded on such graphs.
- Verifies Benjamini's predictions when the probability $p=1 / 2$ is replaced by a sufficiently low/high (but fixed!) probability.
- Recurrent case does not require $G$ to be of bounded degree.


## Tool: Circle Packings

- A circle packing $P$ is a collection of closed disks in $\mathbb{R}^{2}$ with disjoint interiors. Graph structure on $P$ : disks adjacent if tangent. Accumulation points of disks are allowed.
After site percolation with probability $p$, write $P_{p}$ for the graph of retained disks.
Carrier of a circle packing representing a triangulation: Union of disks and interstices between disks.
- Theorem (Koebe 1936, Andreev, Thurston): Every (finite or infinite, simple) planar graph can be represented by a circle packing.


Circle packing representing a graph


Carrier $=\mathbb{R}^{2}$


Carrier = unit disk $\mathbb{D}$

## Circle packings and recurrence

- Theorem (He-Schramm 1995, uniformization theorem):

Let $G$ be a one-ended triangulation. Then

1) $G$ may be represented by a circle packing with carrier $\mathbb{R}^{2}$ (CP-parabolic) or by a circle packing with carrier $\mathbb{D}$ (CP-hyperbolic), but not by both.
2) If $G$ is recurrent then it is CP-parabolic.
3) If $G$ is of bounded degree and transient then it is CP-hyperbolic.


Carrier $=\mathbb{R}^{2}$
CP-parabolic
© Adam Marcus


Carrier = unit disk $\mathbb{D}$ CP-hyperbolic
© Angel-Hutchcroft-Nachmias-Ray

## Main result

- Theorem (P. 2020): There exists $p_{0}>0$ such that for every circle packing $P$ :
- The retained graph $P_{p_{0}}$ contains no cluster of infinite (Euclidean) diameter.
- Moreover, if $D:=\sup _{C \in P} \operatorname{diam}(C)<\infty$ then for each disk $C_{0} \in P$, $\mathbb{P}\left(C_{0}\right.$ is connected to distance $r$ after percolation $) \leq e^{-\frac{r}{D}}$



## Main result

- Theorem (P. 2020): There exists $p_{0}>0$ such that for every circle packing $P$ :
- The retained graph $P_{p_{0}}$ contains no cluster of infinite (Euclidean) diameter.
- Moreover, if $D:=\sup _{C \in P} \operatorname{diam}(C)<\infty$ then for each disk $C_{0} \in P$, $\mathbb{P}\left(C_{0}\right.$ is connected to distance $r$ after percolation $) \leq e^{-\frac{r}{D}}$

- Theorem says that while infinite clusters may exist after $p_{0}$ site percolation, they necessarily connect to accumulation points rather than to infinity.
- Result on recurrent one-ended triangulations follows as they are represented by circle packings with no accumulation points by the He-Schramm theorem. Transient case follows from the He-Schramm theorem and the quantitative bound above using an additional argument.
- Conjecture that $p_{0}$ may be taken to be $1 / 2$ in the first part of the theorem. Will imply a positive answer to Benjamini's question on recurrent triangulations.


## Proof 1 (statement to prove)

- Technically convenient to prove result for square packings (circle packing case requires minor alterations). Convenient to draw pictures with $\ell_{\infty}$-distance. Square packing: a collection $P$ of closed squares in $\mathbb{R}^{2}$ with disjoint interiors. Graph on $P$ : squares adjacent if they intersect.
Percolation: Retain each square with a small probability $p$ independently ( $p=e^{-26}$ is sufficiently small for the argument).
- Write $\left\{S_{0} \xrightarrow{\leq d} r\right\}$ for the event that the square $S_{0}$ is connected to distance $r$ by retained squares whose diameters do not exceed $d$.

- Prove following result (general case is similar):

Let $P$ be a square packing with squares of diameter at least 1 . For each $r>0$, integer $k \geq 0$ and $S_{0} \in P$ with diam $\left(S_{0}\right) \leq 2^{k}$ have

$$
\mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k}} r\right) \leq e^{-\frac{r}{2^{k}}} .
$$

## Proof 2 (induction base)

- To prove: Let $P$ be a square packing with squares of diameter at least 1 . For each $r>0$, integer $k \geq 0$ and $S_{0} \in P$ with diam $\left(S_{0}\right) \leq 2^{k}$ have

$$
\mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k}} r\right) \leq e^{-\frac{r}{2^{k}}}
$$

- Proof by double induction on $k$ and $r$.
- Base case $k=0$ : at most 8 neighbors to each square. Expected number of paths in $P_{p}$ of length $L$ is at most $8^{L-1} \cdot p^{L}$. Need path of length $\lceil r\rceil$ to reach distance $r$.
 Probability at most $e^{-r}$ when $p \leq \frac{1}{8} e^{-1}$.
- Induction hypothesis 1: Fix $k \geq 1$ and assume result known for $k-1$ and all $r$.
- Base case $r \leq 2^{k+1}: \mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k}} r\right) \leq \mathbb{P}\left(S_{0}\right.$ is retained $)=p \leq e^{-2} \leq e^{-\frac{r}{2^{k}}}$.
- Induction hypothesis 2: Fix $r>2^{k+1}$ and assume result up to $r-2^{k}$.


## Proof 3 (diameter of $S_{0}$ )

- Diameter of $S_{0}$ : To use induction, wish to ensure that diam $\left(S_{0}\right) \leq 2^{k-1}$. If this is not already the case:
- Cut $S_{0}$ into four squares $S_{0}^{1}, S_{0}^{2}, S_{0}^{3}, S_{0}^{4}$.

| $S_{0}$ |
| :---: | | $S_{0}^{1}$ | $S_{0}^{2}$ |
| :---: | :---: |
| $S_{0}^{3}$ | $S_{0}^{4}$ |

- Replace $\left(P, S_{0}\right)$ by $\left(P^{i}, S_{0}^{i}\right)$, for $1 \leq i \leq 4$, where $P^{i}=\left(P \backslash\left\{S_{0}\right\}\right) \cup\left\{S_{0}^{i}\right\}$.
- Prove the slightly stronger bound

$$
\mathbb{P}\left(S_{0}^{i} \xrightarrow{\leq 2^{k}} r\right) \leq \frac{1}{4} e^{-\frac{r}{2^{k}}}
$$

- This will establish the result for $\left(P, S_{0}\right)$ by a simple coupling with the percolations on the $\left(P^{i}, S_{0}^{i}\right)$.


## Proof 4 (using the induction)

- Recap: $P$ a square packing with squares of diameter at least 1 . Fix $k \geq 1$. To prove: For each $r>0$ and $S_{0} \in P$ with $\operatorname{diam}\left(S_{0}\right) \leq 2^{k-1}$

$$
\mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k}} r\right) \leq \frac{1}{4} e^{-\frac{r}{2^{k}}}
$$

Bound holds by induction (without $1 / 4$ ) for $k-1$ and all $r$.
Fix $r>2^{k+1}$. Bound holds by induction (without $1 / 4$ ) up to $r-2^{k}$ (for fixed $k$ ).

- Write event as the union:

$\left\{S_{0} \xrightarrow{\leq 2^{k}} r\right\}$

$\left\{S_{0} \xrightarrow{\leq 2^{k-1}} r\right\}$
$\operatorname{diam}(S) \in\left(2^{k-1}, 2^{k}\right]$


On next slide

- Note $\mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k-1}} r\right) \leq e^{-\frac{r}{2^{k-1}}} \leq e^{-2} \cdot e^{-\frac{r}{2^{k}}}$ using the induction and $r>2^{k+1}$.


## Proof 5 (using the induction 2)

- Second event states that there exists $S \in P$ with $d\left(S_{0}, S\right) \leq r$ and $\operatorname{diam}(S) \in\left(2^{k-1}, 2^{k}\right]$ such that
- $S_{0}$ connects to a neighbor of $S$ with retained squares of diameter at most $2^{k-1}$,
- $S$ connects to distance $r$ from $S_{0}$ with retained squares of diameter at most $2^{k}$,
- These connections use a disjoint set of squares.

- By BK inequality and induction hypotheses, this event has probability at most

$$
\begin{aligned}
& \mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k-1}} d\left(S_{0}, S\right)-2^{k-1}\right) \cdot \mathbb{P}\left(S \xrightarrow{\leq 2^{k}} r-d\left(S_{0}, S\right)-2^{k}\right) \\
& \leq \min \left\{\exp \left(-\frac{d\left(S_{0}, S\right)-2^{k-1}}{2^{k-1}}\right), p\right\} \cdot \exp \left(-\frac{r-d\left(S_{0}, S\right)-2^{k}}{2^{k}}\right) \\
& \leq \min \left\{\mathrm{e}^{2} \cdot \mathrm{e}^{-\frac{d\left(S_{0}, S\right)}{2^{k}}}, p \cdot e^{1+\frac{d\left(S_{0}, S\right)}{2^{k}}}\right\} \cdot e^{-\frac{r}{2^{k}}}
\end{aligned}
$$

## Proof 6 (finish)

- We have obtained

$$
\mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k}} r\right) \leq\left(e^{-2}+\sum_{S} \min \left\{\mathrm{e}^{2} \cdot \mathrm{e}^{-\frac{d\left(S_{0}, S\right)}{2^{k}}}, p \cdot e^{1+\frac{d\left(S_{0}, S\right)}{2^{k}}}\right\}\right) e^{-\frac{r}{2^{k}}}
$$

where the sum is over all $S \in P$ with $d\left(S_{0}, S\right) \leq r$ and diam $(S) \in\left(2^{k-1}, 2^{k}\right]$.

- It remains to note that by area considerations, the number of such $S$ with $d\left(S_{0}, S\right) \leq m \cdot 2^{k}$ is of order at most $m^{2}$.
- It follows that the expression in the parenthesis is at most $\frac{1}{4}$ when $p$ is sufficiently small, finishing the proof by induction.
- Remark: The area considerations are the only place in the argument where the fact that we have squares rather than, say, rectangles, is used.


## Extensions

- Theorem (P. 2021+): Let ( $X, d$ ) be a metric space and $P$ be a countable collection of subsets of $X$ of finite diameter (not necessarily a packing). Graph structure on $P$ : Sets adjacent if have non-empty intersection. Suppose that for each $S \in P$ and $\rho, t>0$,

$$
\left|\left\{S^{\prime} \in P: d\left(S, S^{\prime}\right) \leq \rho, \operatorname{diam}\left(S^{\prime}\right) \geq t\right\}\right| \leq e^{C_{1}+C_{2} \frac{\rho+\operatorname{diam}(S)}{t}}
$$

for some $C_{1}, C_{2}>0$. Then there exists $p>0$ depending only on $C_{1}, C_{2}$ such that there is no connected component of infinite diameter in $P_{p}$.

- Example: packing of shapes in $\mathbb{R}^{n}$ whose volume is proportional to the $n$th power of their diameter with a uniform proportionality constant.
- Theorem (P. 2020): There exists $p>0$ such that the following holds. If $G$ is a Benjamini-Schramm limit of (possibly random) finite planar graphs then there is no infinite cluster in $G_{p}$.
- Used in study of the loop $O(n)$ model (Crawford-Glazman-Harel-P. 2020).

Main lemma: Benjamini-Schramm limits have circle packing with at most one accumulation point (small extension of Benjamini-Schramm (2001)).

- Remove one-ended and triangulation assumptions from result on recurrent planar graphs (in progress. Replaces He-Schramm theorem with Gurel-Gurevich-Nachmias-Souto 2017).


## Conjectures (general circle packings)

- Conjecture 1 ( $p=1 / 2$ ): No cluster of infinite diameter after $p=1 / 2$ site percolation on any circle packing. Implies no infinite cluster after $p=1 / 2$ site percolation on recurrent one-ended triangulations (positive answer to Benjamini's question).
- Conjecture 2 (exponential decay):

For each $p<1 / 2$ there exists $f(p)>0$ such that:
Let $P$ be a circle packing with $D:=\sup _{C \in P} \operatorname{diam}(C)<\infty$. Let $C_{0} \in P$.
After percolation with parameter $p$,

$$
\mathbb{P}\left(C_{0} \text { is in a cluster of diameter } \geq r\right) \leq \exp \left(-f(p) \frac{r}{D}\right)
$$

Implies existence of infinite cluster for $p>1 / 2$ site percolation on transient bounded-degree one-ended triangulations (almost proves Benjamini's conjecture).

- Similar conjectures for ellipse packings (or other shapes). In conjecture $2, f(p)$ is then replaced by $f(p, M)$ with $M$ the maximal aspect ratio. Interesting to understand dependence on $M$, even for small $p$ (has applications to the loop $\mathrm{O}(\mathrm{n})$ model).


## Conjectures (critical percolation on circle packings)

- Let $P$ be a circle packing representing a triangulation with carrier $\mathbb{R}^{2}$. If $D:=\sup \operatorname{diam}(C)<\infty$, previous conjectures imply $p_{c}=1 / 2$ (using duality). $C \in P$
In fact, $p_{c}=1 / 2$ may even hold under the assumption that the radii grow sublinearly (with a loglog correction) in the distance to the origin.
- For such circle packings, is the scaling limit of $p=1 / 2$ site percolation the conformal loop ensemble CLE (as for the triangular lattice)?
- A related statement is to prove Russo-Seymour-Welsh type estimates at $p=1 / 2$ : the probability of a left-right crossing of a large rectangle by retained disks is in [ $c, 1-c$ ] where $c>0$ depends only on the aspect ratio of the rectangle.
- Benjamini (2018) states a related conjecture: There exists $c>0$ so that the following holds. Tile a square with squares of varying sizes so that at most three squares meet at corners. In $p=1 / 2$ site percolation on the squares, the probability of a left-right crossing of retained squares is at least $c$.
- The presented results imply this when $p=1 / 2$ is replaced by a
 universal constant sufficiently close to 1.


## Loop O(n) model

- Model for non-intersecting loops on hexagonal lattice. Introduced by Domani-Mukamel-Nienhuis-Schwimmer (81) as an approximate graphical representation of spin $O(n)$ model. Gives a random-cluster (Fortuin-Kasteleyn) like representation for dilute Potts model with $q=n^{2}$ (Nienhuis 91).
- For given parameters $n, x>0$, the weight of a configuration $\omega$ is given by $n^{L(\omega)} x^{|\omega|}$ where $L(\omega)$ is the number of loops in $\omega$ and $|\omega|$ is the number of edges in $\omega$.
- Nienhuis (82) obtained the phase diagram of the model by mapping it to a Coulomb gas. Predicts critical behavior for $n \in[-2,2]$.


## Loop $O(n): n=1.4, x=0.57$

## Loop $O(n): n=1.4, x=0.63$



## Loop $O(n): n=1.5, x=1$



## Loop $O(n): n=0.5, x=0.6$



## Predicted phase diagram and rigorous results

Figure by Alexander Glazman and Ioan Manolescu


Crawford-Glazman-Harel-P. 2020: large loops in blue region of parameters. Proof using XOR trick and result on no-percolation on circle packings.

## $n=x=1$ : critical percolation



## $n=x=1$ : XOR trick (1)



## $n=x=1:$ XOR trick (2)


$n=1.3, x=1$ :long loops colored


## $n=1.3, x=1$ : no colors



## $n=1.3, x=1: \mathrm{p}=\frac{0.3}{1.3}$ loop percolation



## $n=1.3, x=1$ : superimposed loop



## $n=1.3, x=1:$ adjusted loop


$n=1.3, x=1:$ after XOR


## $n=1.3, x=1$ : final configuration



